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Abstract: This paper presents a new pathway towards the public health resilience, through the 13 

development of a principled understating on the post-hazard emergency transfer of the injured 14 

population across densely-populated urban communities, considering the deployment of connected and 15 

autonomous vehicles (CAVs). Given the influence on the system resilience of several parameters such 16 

as the number and distribution of CAVs, the initial geographic distribution of the injured and the 17 

spatiotemporal evolution of the functionality of the integrated hospital-road networks, a multi agent-18 

based modelling (ABM) framework has been established to identify relevant patterns and bottlenecks 19 

in injured transfers across hazard-impacted urban communities. In such an ABM framework, each 20 

individual vehicle, transferring an injured inhabitant, is modelled as an independent agent, whose 21 

traveling is shaped by pre-defined behavioral attributes, while the interplay among those agents is also 22 

considered, throughout the entire transfer campaign. Based on a hypothetically catastrophic earthquake 23 

scenario, such an ABM framework is employed to model the city-scale, post-shock transfer across 24 

Tangshan city, located in one of the most earthquake-prone regions of China. The simulation outcome 25 

reveals that the information sharing with regard to the real-time functionality of the local hospital system 26 

plays a strategically crucial role, to the avoidance of uncoordinated and prolonged transfers. Furthermore, 27 

owing to their capability of intelligent route planning, the participation of CAVs can substantially bolster 28 

the rapidity and effectiveness of post-shock transfer campaigns.  29 

Key words: Public health resilience; Post-hazard transfer; Hospital systems; Agent-based model; 30 

Connected and autonomous vehicles; Route planning  31 
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1. Introduction 43 

Despite its significant contribution to socio-economic development, the current pace of urbanization 44 

poses challenges to the well-being of modern cities, as it is expected that by 2050, 68% of the world 45 

population will be urban (United Nations 2018). Increased population density has severe consequence 46 

on the vulnerability of the urban infrastructure under disruptive events, such as earthquakes or hurricanes, 47 

or pandemics, as emerged in the case of Covid-19 (Civljak et al. 2020, WHO 2022). Given the significant 48 

number of injured inhabitants needing life-saving treatments during such disruptive events, timely and 49 

sustainable access to the local hospital system plays a strategically crucial role, with regard to the public 50 

health resilience of the whole urban community, which the hospital system serves. Nevertheless, the 51 

functionality of hospital systems themselves have often proven highly susceptible to disruptions, 52 

especially, under damaging earthquakes, as the lesson learnt from real-world destructive events around 53 

the globe (Yavari et al. 2010, Jacques et al. 2014).  54 

Such observations have triggered several studies aimed to assess the hospital systems’ ability to 55 

absorb a significant number of casualties following seismic hazards, and provide a viable pathway 56 

towards the continuity of their functionalities. For instance, Cimellaro et al. (2011) presents an 57 

organizational model for the response of hospital’s emergency department, which enables the estimation 58 

of the hospital capacity in real-time, considering the impact of the damage of both structural and non-59 

structural components. In their model, as a straightforward indicator of the time-varying functionality 60 

of hospitals, the patient’s waiting time has been employed to assess its resilience thereof. In light of the 61 

wide range of aspects incorporated, from the configuration to the resources, such a model can serve as 62 

an adaptive tool for the risk governance with respect to individual hospitals of interest. 63 

More recently, Ceferino et al. (2020) looked into effective response plans of hospital systems under 64 

seismic contingencies, and applied their model to Lima city, Peru, under catastrophic earthquake 65 

scenarios. Their results demonstrate that the hospital system coordination shall be explored as an 66 

effective approach to match demand and supply of the system, and therefore decrease the waiting time 67 

of severely-injured patients. 68 

Zhai et al. (2021) proposed a comprehensive framework to model the functionality of earthquake-69 

impacted hospitals, which is set to be measured by the ratio of the number of earthquake-induced 70 

patients treated to the total number of patients. To that end, a discrete simulation model, which tracks 71 

the treatment process of patients, was developed and incorporated into the framework. Such a framework 72 

is applied to a general-purpose, secondary hospital in China, and the outcome reveals that the hospital 73 

functionality is highly correlated with earthquake intensity measures and highly impacted by damage to 74 

nonstructural components and utilities. 75 

It shall be highlighted that, apart from the functionality of the individual, or networked hospital 76 



systems, the prompt and effective post-shock transfer of injured patients plays an at least equally 77 

important role, in terms of the minimization of the death toll, and ultimately, the public health resilience 78 

of the earthquake-impacted urban communities. 79 

Nonetheless, as repeatedly demonstrated by real-world destructive seismic events, the post-shock 80 

transfer of the injured is very likely to be stalled by substantial functionality losses of earthquake-81 

damaged road network embedded in the same urban community (Lin et al. 2010, Hara and Kuwahara 82 

2015). Some studies have been carried out to measure the influence of the functionality losses of road 83 

networks, which can be even longstanding, on the post-shock emergency evacuation and transfer (Miller 84 

and Baker 2016, Toma-Danila et al. 2022). Moreover, potential panic and irrational reactions of the 85 

population are also found to play a uniquely crucial role in successful evacuation and transfer, as 86 

highlighted by recent studies on the psychological consequences of hazard events, like earthquakes 87 

(Cimellaro et al. 2017, Feng et al. 2020, Wang et al. 2021).  88 

In parallel, thanks to the latest breakthrough in artificial intelligence-capable machines (Kwiatkowski 89 

and Lipson 2019, Schrittwieser et al. 2020), connected and autonomous vehicles (CAVs) have been 90 

increasingly poised to serve as autonomous transport systems of future urban communities (Lipson and 91 

Kurman 2022). Justifiably, large scale deployment and participation of CAVs could also help to 92 

revolutionize the post-hazard emergency transfer (Fagnant and Kockelman 2015).  93 

Essentially, under earthquake contingencies, compared to human-driven vehicles (HDVs), CAVs can 94 

be particularly competitive, in the sense that: 95 

a. Based on the real-time traffic information, CAVs are capable of planning the travel route 96 

autonomously, by resorting to state-of-the-art vehicle-to-infrastructure communication systems 97 

(Zhang et al. 2020); 98 

b. CAVs could be strategically helpful, with regard to the transfer of those earthquake-injured 99 

inhabitants (Van den Berg and Verhoef 2016), as well as other vulnerable groups (e.g. those 100 

disabled, seniors and children inhabitants, who will be unable or struggling to drive on their own). 101 

In view of such a prospect for the amelioration of public health resilience of future urban 102 

communities under damaging earthquakes, it is critical to develop a principled understanding on those 103 

post-shock transfers with the participation of CAVs, incorporating aspects ranging from the estimation 104 

of the casualties and the geographic distribution thereof, to the behavioural pattern of CAVs, and human 105 

factors, which has been sparsely studied so far. 106 

To fill in such a knowledge gap, an agent-based model (ABM) is developed in this paper, to simulate 107 

the post-shock transfer at city scale, incorporating the participation of CAVs. In this ABM, each 108 

earthquake-injured inhabitant in need of hospitalization is modelled as an individual agent, whose 109 

behavior is driven by both the hospital choice and the corresponding route planning. The impact of the 110 

access to real-time information, and the spatiotemporal evolution of the functionality of the integrated 111 



hospital-road system on the decision-making of the agents, are examined in-depth in this study, 112 

considering the hybrid deployment of CAVs and HDVs. 113 

To investigate its applicability under catastrophic earthquake scenarios, such an ABM has been 114 

employed to model a citywide post-shock emergency transfer across Tangshan city, in Hebei province, 115 

China, built on a strike-slip active fault, and the site of a catastrophic earthquake of Mw 7.6 in 1976. 116 

The simulation outcome reveals that the availability of information about the real-time functionality of 117 

the local hospital system plays a decisive role in minimizing transfer and waiting times. Meanwhile, 118 

owing to their capability of intelligent route planning, the substantial participation of CAVs can bolster 119 

both the rapidity and effectiveness of post-shock transfer campaigns, in a remarkable way. 120 

The remainder of this paper includes: Section 2, which highlights the ABM framework; Section 3 121 

focuses on the description of the topological configuration of both the hospital and road network 122 

embedded in Tangshan city, which serves as the application of the framework. The geographic 123 

distribution of the population across the city as well as the location of individual hospitals and their 124 

connectivity are also presented; Sections 4 and 5 discuss the simulation outcome and draw the 125 

corresponding conclusions, respectively. 126 
 127 

2. Agent-based modeling framework of post-shock emergency transfers 128 

Due to the uncertainty of hazard scenarios, the vulnerability of different infrastructure systems and the 129 

interaction among them, as well as the political and economic context, the post-shock emergency 130 

transfer across modern urban communities is inherently dynamic and stochastic.  131 

As illustrated in Fig. 1, under public emergencies associated with destructive seismic events, 132 

significant numbers of injured could be induced by the physical damage and collapse of building 133 

structures. Pursuant to the epicenter and magnitude of the earthquake scenario, as well as the location, 134 

fragility and occupancy rate of each of those buildings, the level of casualty and the geographic 135 

distribution thereof, can be obtained for the whole urban community (Ceferino et al. 2018). For severely-136 

injured inhabitants, it is imperative to transfer them to the closest available hospital to receive life-saving 137 

treatments, through either CAVs or HDVs, in an expeditious way. A possible representation of the likely 138 

sequence of events relating to injured individuals accessing emergency department facilities can be 139 

discretise in the following steps: i) selection of a particular hospital, based on the proximity, the 140 

reputation and the real-time information regarding the availability of ward beds (if available) of the local 141 

hospital system; ii) thereby selection of a travel route, given the connectivity between that selected 142 

hospital and the neighbourhood of departure, as well as the potential connectivity disruption of the road 143 

network following the earthquake (Toma-Danila et al. 2022); iii) as the number of injured increases in 144 

the immediate aftermath of the mainshock, crowd dynamics will be generated by the collective motion 145 

of individual transfers throughout the post-shock phase (Helbing et al. 2000).  146 



Accordingly, the functionality of the hospital system and road network, both of which are essentially 147 

serving as the supply capacity regarding the emergency transfer, is affected by the crowd dynamics, 148 

leading in turn to the reorientation of the decision-making relating to the selection of hospital destination 149 

and travel route, therefore causing the demand to be also temporally and spatially variable and uncertain 150 

(Sun et al. 2015). Justifiably, the adaptivity of the route planning of CAVs, who could shun congested 151 

road segments pursuant to the real-time traffic flow information, will play a strategic role, to the 152 

avoidance of prolonged transfers, which could substantially decrease the mortality rate of earthquake-153 

impacted communities.    154 

To account for the impact of the looped and dynamic interplay between the supply and demand of 155 

the integrated hospital system and road network, an ABM framework has been established in this study, 156 

as a bottom-up and adaptive computational approach to the post-shock emergency transfers (Ouyang 157 

2014). In this framework, given the earthquake scenario, the quantity and geographic distribution of the 158 

casualty is assessed in the absorption phase (Ouyang et al. 2012), while the mass transfer is modelled in 159 

the corresponding phase of the immediate aftermath of earthquakes, where each of the vehicle (either 160 

CAVs or HDVs) participating in the transfer will be modelled as an intelligent agent (Sun et al. 2021). 161 

The trajectory of the emergency transfer throughout the whole seismic event can be thereby tracked, the 162 

rapidity and effectiveness of which will serve as a measure on the public health resilience of the whole 163 

community. 164 

 165 

Fig. 1. Post-shock emergency transfer across the earthquake-impacted community-hospital system-road network. 166 
 167 

2.1. Earthquake hazard and casualty model 168 

In this framework, to assess the number and distribution of the earthquake-injured inhabitants, damage 169 

behaviour of each of building structures across the whole urban community is modelled by its fragility 170 



and the corresponding intensity measures, which are usually determined by ground motion attenuation 171 

models and the given earthquake scenario (Stupazzini et al. 2021). In this study, without loss of 172 

generality, the attenuation model developed by Atkinson and Boore (1995), applicable to earthquakes 173 

with 4 ≤ MW ≤ 7.25, is incorporated into the framework, to enable the study of post-shock emergency 174 

transfer under earthquake scenarios with high magnitude, whereby trivial simulation outcomes can be 175 

avoided.  176 

Mathematically, the peak ground acceleration, which is the intensity measure employed in this study, 177 

is therefore obtained following Eq. (1):  178 

log(𝑃𝐺𝐴) = 𝑎! + 𝑎"(𝑀# − 6) + 𝑎$(𝑀# − 6)" − log𝑅% − 𝑎&𝑅%																																																																												(1) 179 

Here, Mw and Re refers to the earthquake magnitude and the corresponding epicentral distance, 180 

respectively; Meanwhile, the value of the parameters a1, a2, a3 and a4 are set to be 3.79, 0.298, -0.0536 181 

and 0.00135, respectively, as obtained from regression analysis (Atkinson and Boore 1995). Alternative 182 

attenuation laws specific to the site of interest or intensity measures, suitable to identify the response of 183 

specific structural typologies, can be equally employed in the framework. 184 

A thorough review of casualty estimation methods has been provided recently by Yan et al (2021). 185 

Models can be empirical (based on past data) or predictive (based on causal factors, such as buildings’ 186 

vulnerability) and be applicable at different scales, from regional to local. In the present study, given the 187 

damage state of each individual building determined through fragility analysis based on the peak ground 188 

acceleration at its site, the community-level casualty analysis can be run following the model proposed 189 

by Coburn et al. (1992), which accounts for the occupancy rate of buildings and the total population of 190 

the community. It is noteworthy that, in this study, only those inhabitants sustaining the hospitalization-191 

level injury are assumed to participate in the post-shock emergency transfer, whereby the city-wide 192 

simulation can be more tractable. 193 

Besides, in view of the spatial-temporal variability of the population across modern urban 194 

communities driven by their modus operandi, the impact of different timing of earthquake hazards on 195 

the post-shock transfer is also considered in this study (Ceferino et al. 2020). Specifically, a daytime and 196 

a nighttime scenario, respectively, will be considered. They are simulated by considering that the 197 

majority of the inhabitants are located in the downtown area of the community of interest, during 198 

daytime, while during nighttime the majority will be in residential neighborhoods, which are often 199 

located at the periphery of modern communities.  200 

 201 
2.2. Hospital selection criteria  202 

Let C = {n1, n2, …, nm} denote the array of neighborhoods embedded in the urban community of interest, 203 

where m is the total number of those neighborhoods. Meanwhile, HS = {h1, h2, …, hk} stands for the 204 



local hospital system consisting of k individual hospitals. In this research, for hospital hi (i ∈ k) in the 205 

HS, its functionality will be characterized by two attributes, denoted as 𝐶!"#$, and 𝐼𝐴!(𝑡), respectively. 206 

As a constant, 𝐶!"#$  stands for the maximum healthcare capacity of hi, while 𝐼𝐴!(𝑡) refers to the 207 

number of the injured, who have already been admitted to this hospital, at time point t. Its remaining 208 

healthcare capacity at such a moment, denoted as RCi(t), can be therefore obtained following Eq. (2):  209 

RCi(t) = 1
𝐶'()* − 𝐼𝐴'(𝑡), 		𝐼𝐴'(𝑡) < 𝐶'()*

0,																																				𝐼𝐴'(𝑡) = 𝐶'()*
																																																																																																										(2) 210 

Equation 2 shows that any injured patient arriving at hi at a time t+ greater than time t=T0, when 211 

RCi(T0)=0, will need to re-select among the remaining hospitals with spare capacity to receive medical 212 

treatments. By doing so, the heterogeneity (e.g. regarding the functionality) of modern hospital systems 213 

can be taken into account, by the proposed ABM framework. This condition arises from the assumption, 214 

legitimate in the timeframe of this simulation, that no patient will be discharged during the period of 215 

time needed to deliver all casualties to an emergency department unit. 216 

In the pre-shock phase, apart from those centralized transfer strategies (Ceferino et al. 2020), the 217 

hospital selection of individual inhabitants will be collectively driven by a host of influential factors, 218 

ranging from the reputation of every single hospital, to the personal preference and household financial 219 

conditions (Hassan and Mahmoud 2020), and is thus fairly complex unregulated phenomenon. In the 220 

immediate aftermath of an earthquake, however, given the type of injuries usually sustained, the travel 221 

time needed to reach a given hospital, also plays a decisive role in the selection of the destination (Del 222 

Papa et al. 2019). Clearly, the shorter the travel time is, the more likely those severely-injured can access 223 

life-saving treatments, and thereby survive.   224 

As an endeavor to balance the trade-off between the inclusiveness and computational tractability, the 225 

hospital selection of injured inhabitants in neighborhood nj (j ∈ m) will be following the criterion 226 

formulated in Eq. (3):  227 

𝑃!,# =
$%+(')	,*+,.	/0

∑ $%+('),*+,.	/01
+23

																																											                                     (3) 228 

whereby, Di,j stands for the length of the shortest path between that neighborhood and hospital hi, which 229 

is obtained using the classical Dijkstra algorithm (Dijkstra 1959). The attraction coefficient, denoted as 230 

ϖ, is introduced to serve as a measure on how decisive the remaining healthcare capacity of one 231 

particular hospital is, with regard to the selection of the destination: the higher the ϖ value, the more 232 

likely hospitals with greater remaining capacity are chosen. Similarly, the resistance coefficient, denoted 233 

as ξ, is employed to measure the effect of the travel distance on destination decision-making. 234 

Mathematically, for each hospital, their distance to the neighborhood of interest will be increasingly 235 

disproportionate to the likelihood of being picked by the inhabitants living there, in the case of higher ξ 236 

values (Wu et al. 2010).  237 



It is noteworthy that, in this study, it is also assumed that the decision-making of the injured 238 

inhabitants, who are modelled as the autonomous agents in the ABM framework, will be independent 239 

from others. Besides, to avoid unaffordable computational costs, throughout the post-shock emergency 240 

transfer, once the decision is made, the re-selection of the targeted hospital en route will not be 241 

considered in the following case-study, until the arrival at the selected one (Wang et al. 2016). If, upon 242 

arrival, the selected hospital capacity is saturated, they will then need to re-select their new destination, 243 

according to Eq. (3).   244 

Furthermore, it shall be highlighted that, the hospital selection following Eq. (3) is conditioned upon 245 

the enduring information sharing, which may not hold true, with respect to damaging earthquakes. 246 

Regarding those cases, the agents will select the hospital based upon the pre-shock functionality level, 247 

namely, replace RCi(t) with 𝐶!"#$, in Eq. (3).  248 

 249 
2.3. Travel route planning of CAVs 250 

Inhabitants engaging in post-hazard evacuations and transfers would often resort to various ways of 251 

travel (Li et al. 2020). Nonetheless, given the urgency of the rescue in the wake of damaging earthquakes, 252 

all the injured inhabitants participating in the post-shock transfer are assumed to be transferred to the 253 

local hospital system by vehicles (not by walking), in this study. Without losses of generality, it is 254 

assumed that agents driving HDVs are experience-based, who will always choose the shortest path to 255 

the targeted hospital, as obtained through the topology of the local road network, regardless of the real-256 

time traffic flow en route. By comparison, CAVs are assumed to be able to reorient their path through 257 

dynamic planning, in the course of post-shock transfers. 258 

Mathematically, dynamic planning is a general paradigm, which can be employed to fulfil the 259 

optimization objective, with respect to sequential decision-makings (Russell and Norvig 2021). 260 

Regarding CAVs participating in post-shock transfers, the objective is the minimization of the expected 261 

travel time (ETT). Pursuant to that objective, as shown in Fig. 2, for a CAV agent (who is departing from 262 

the neighborhood nj and has picked the hospital hi) at the lth decision-moment (referred to as DMl) en 263 

route, i.e. the lth crossroad it has arrived at, the action to be taken (namely, which particular road segment 264 

it will then switch to), denoted as Al, is determined by Eq. (4): 265 

Al = arg min
4

	 𝐸𝑇𝑇;𝑇𝑅(𝑉, 𝐴), 𝑇𝐹(𝐷𝑀5), 𝑎4? (p=1, 2, ..., Q)                                      (4) 266 

Here, TR(V, A) is the topological model of the local road network established based on graph theory, 267 

where V = {v1, v2, ..., vR} is the set of R vertices of the network, which stand for the crossroads, 268 

neighborhoods and hospitals, respectively. Meanwhile, A = {a1, a2, ..., aT} refers to the corresponding T 269 

arcs, namely, the road segments. Among those arcs, ap (p=1, 2,…,Q) stand for the array of those Q arcs 270 

connected to the lth crossroad where the agent is now, excluding the one, which the agent has just 271 



travelled along (whereby infinite loops can be avoided). In particular, to consider the impact of the real-272 

time traffic flow across the whole road network, referred to as 𝑇𝐹(𝐷𝑀%), on the adaptive decision-273 

makings of CAV agents, the classic impedance function has been introduced into this framework 274 

(Branston 1976), and the ETT needed regarding road segment ap (denoted as ETp(𝐷𝑀%)) is therefore 275 

obtained by Eq. (5):    276 

ETp(𝐷𝑀5)) =	𝐹𝑇4 @1 + 𝛼 C
67!(9:")
:6!

D
<
E                                                       (5) 277 

Here, 𝐹𝑇& denotes the free travel time of ap that can be determined by	𝐿# 𝑣'⁄ , where 𝐿# stands for 278 

the length of this arc, while 𝑣' refers to the free flow travel speed of the CAV. Meanwhile, 𝑇𝐹&(𝐷𝑀%) 279 

and MTp denote the real-time traffic flow of ap at the moment DMl, and the maximum traffic-carrying 280 

capacity of such a road segment, respectively. Moreover, the values of the parameters α and β have been 281 

set to be 4.5 and 4.0, respectively, in this research (Feng et al. 2020). 282 

As shown in Fig. 2, driven by the dynamic programming and the choice of ap, the CAV agent will 283 

virtually reach the next crossroad 𝑣%
&, after a period of time ETp(𝐷𝑀%)). To minimize the total expected 284 

travel time of the transfer, the agent can, at this point, choose a route (among all the possible ones, 285 

pursuant to the choice of ap) associated with the minimum travel time needed thereafter to arrive at the 286 

hospital hi from 𝑣%
&(Hart et al. 1968). For any particular route Rg (g = 1, 2, …, 𝑁𝑅%

&), the corresponding 287 

time span, denoted as TT(Rg), can be thereby determined through Eq. (6):  288 

TT(Rg) = F 	𝐹𝑇= G1 + 𝛼 H
>6#(9:")
:6#

I
<
J

?!
$

=@!

                                                   (6) 289 

Here, 𝑁&
( stands for the total number of road segments that route comprises. Therefore, 290 

𝐸𝑇𝑇3𝑇𝑅(𝑉, 𝐴), 𝑇𝐹(𝐷𝑀%), 𝑎&7 can be obtained by Eq. (7): 291 

𝐸𝑇𝑇;𝑇𝑅(𝑉, 𝐴), 𝑇𝐹(𝐷𝑀5), 𝑎4? = ETp(𝐷𝑀5)) + min(TT(Rg)), g = 1, 2, …, 𝑁𝑅5
4                       (7) 292 

As illustrated in Fig. 2, after the execution of the action Al, the CAV agent will travel along the 293 

corresponding road segment, until the arrival of the next crossroad, namely, the (l+1)th one. The decision 294 

at such a moment, DMl+1, will be made following the same dynamic programming procedure described 295 

above. Such an iteration will continue, until the agent has reached hospital hi eventually.  296 



 297 

Fig. 2. Dynamic route planning of CAV agents.  298 
 299 

2.4. Traffic dynamic model on the system-level  300 

Despite the straightforward pattern of the individual agent’s behavior presented above, it can be fairly 301 

challenging to model the dynamic, self-organized traffic flow across city-scale road networks (Helbing 302 

and Mazloumian 2009) on the system-level, when compounded by earthquake post-shock damage, in 303 

view of the potentially prolonged traffic congestion, as well as the panic and irrationality of considerable 304 

quantity of individual drivers (Feng et al. 2020). To ensure the tractability of the simulation, a queuing 305 

model (Cetin et al. 2003) has been integrated into the ABM framework, whereby the traffic dynamics 306 

regarding the mass crowd consisting of both CAVs and HDVs can be shaped. Following such a model, 307 

when an agent who is driving either a CAV or HDV has reached a crossroad, it can switch to the next 308 

road segment, only if the following requirements have all been fulfilled: 309 

(1) Given a set flow limit for each road segment, the number of vehicles that can switch at every 310 

time step cannot exceed that limit;  311 

(2) The remaining space of the targeted road segment can still allow for additional vehicles; 312 

(3) In case of multiple vehicles being ready to switch at the same time, the one which has reached 313 

the crossroad first will also be allowed to go first.  314 
 315 
2.5. Performance of post-shock emergency transfers  316 

To gauge their performance at system-level, the gross transfer time (GTT) has been proposed as the 317 

measure on the city-scale transfers, and can be quantified by Eq. (8): 318 

𝐺𝑇𝑇 = ∑ 𝐷𝑇A
?%
A@! 																																																																																																		                           (8) 319 

where Nw is the total number of injured people, who are engaging in the post-shock transfer, under any 320 

particular earthquake scenario. Meanwhile, DTv denotes the total travel time from its origin to the 321 



hospital of the agent v. Besides, it is also noteworthy that, in this framework, such a duration does not 322 

include the hospital services’ waiting time, upon arrival. Additionally, once admitted to, the discharge 323 

of those injured inhabitants from hospitals will not be modelled neither in this study, given the time scale 324 

of the immediate aftermath of hazard events. 325 
 326 

3. Case study 327 

3.1. Topology and operational conditions of the hospital system-road network  328 

To examine its applicability, the ABM framework developed in Section 2 has been applied to the 329 

integrated hospital system-road network of Tangshan city, which is an industrial hub located in one of 330 

the most earthquake-prone regions of China (He et al. 2016), and a corresponding case study was 331 

conducted under hypothetical, damaging earthquake scenarios. The simplified topology of such a 332 

networked hospital system-road network-community is plotted in Fig. 3. For each of the neighborhood 333 

across the whole network, without losses of generality, it is assumed that the reinforced concrete and 334 

masonry structures will account for 50% of the gross number of buildings, respectively. Besides, the 335 

fragility model proposed by Jaiswal et al. (2011) is employed to shape the seismic response of these two 336 

different types of structures. 337 

 338 



Fig. 3. Topology of the integrated hospital system-road network-community. 339 
 340 

Specifically, the road network consists of 216 vertices and 375 arcs. Meanwhile, 18 hospitals with 341 

different functionality grades have been incorporated into the hospital system. As shown in Table 1, a 342 

total of three functionality grades, measured by the quantity of ward beds, are considered in this study 343 

(Li et al. 2008). Besides, each of those grades has been assigned to 6 hospitals, so that the total number 344 

of beds coincides with the number of injured (see Table 1 and Fig. 3). 345 

Table 1. Information of the hospital system 346 

Functionality grades Corresponding nodes Number of ward beds 
Ⅰ 94 117 130 145 155 159 2,400 
Ⅱ 32 57 112 146 168 203 1,200 
Ⅲ 13 76 99 157 180 193 680 

Total       25,680 

 347 

In parallel, the corresponding urban community includes 13 neighborhoods, whose population is 348 

summarized in Table 2, leading to a total of 702,394 inhabitants residing in the whole area. For each of 349 

those neighborhoods, its population are assumed to be equally distributed on those nodes associated 350 

with it. 351 

Table 2. Information of the neighborhoods of the community  352 

Number Neighborhood Corresponding nodes Population 

1 Guang Chang 1

8

3 

184 195 196   42,771 

2 Yong Hong Qiao 1

7

6 

161 186 187   21,743 

3 Liang Jia Tun 2

0

1 

208 213 214   62,691 

4 Hui Min Dao 1

8

9 

190 199 200   70,391 

5 You Yi 1

5

2 

153 165 166   41,486 

6 Guo Yuan Zhen 1

2

1 

122 138 139   64,715 

7 Da Li 1

2

4 

125 141 142   66,001 

8 Xiang Yun Dao 1

1

5 

126 127    14,460 

9 Wen Hua Lu 1

0

3 

104 116    66,677 

10 Ji Chang Lu 8

2 

83 92 93   68,201 

11 Gao Xin Qu 4

0 

41 54 55 59 60 100,002 

12 Long Dong 4

5 

46 63 72 73  44,426 

13 He Bei Lu 7 8 16 17   38,830 
 353 

3.2. Scenario-based simulation following the ABM framework  354 

In view of the significant uncertainty associated with seismic hazards, the behavioral pattern (regarding 355 



the hospital selection, as well as the route planning) of individual injured inhabitants, as well as the 356 

number of available CAVs, following the ABM framework described above, Monte Carlo simulations 357 

are run to consider their collective impact on the city-scale, post-shock transfers. For both the CAV and 358 

HDV, their travelling speed are set to be 4m/s in this study, to consider the potential influence of debris, 359 

etc., throughout seismic events.  360 

Meanwhile, given the expensive computational cost, 50 Monte Carlo simulations are run for each 361 

single scenario included in this case study, which have been listed in Table 3. 362 

Table 3. Setup of scenarios included in the case-study 363 

Scenario Information accessibility of each single hospital Timing of earthquakes 
1 yes daytime 
2 no daytime 
3 yes nighttime 
4 no nighttime 

 364 

Specifically, in light of the modus operandi of most modern urban communities, the majority of their 365 

inhabitants are expected to be either working, studying, or shopping across downtown areas, in the 366 

daytime. Conversely, they are supposed to be resting or sleeping at home, usually located on the outskirts 367 

of the city, at nighttime. Therefore, the timing of the mainshock of destructive earthquakes is expected 368 

to have a nonnegligible impact on the post-shock transfer, given that distinct spatial distribution of 369 

populations. Accordingly, two different scenarios, where earthquake is occurring at daytime and 370 

nighttime, respectively, have been considered in this research. In the first case, 80% of the population 371 

affiliated to neighborhoods with ID Nos. 2, 3, 4, 11, 12, and 13 are assumed to relocate to neighborhoods 372 

with ID Nos. 1, 5, 6, 7, 8, 9, and 10 (Fig. 3). On the contrary, in terms of nighttime, the converse applies. 373 

The distribution of the injured population for the two cases is detailed in Table 4. 374 

Table 4. Distribution of injured inhabitants under the scenario with earthquake at daytime and nighttime 375 

Number Neighborhood Daytime Nighttime 

1 Guang Chang 3,071 437 

2 Yong Hong Qiao 223 2,857 

3 Liang Jia Tun 545 3,971 

4 Hui Min Dao 551 4,487 

5 You Yi 3,738 312 

6 Guo Yuan Zhen 4,369 433 

7 Da Li 4,157 514 

8 Xiang Yun Dao 1,715 115 

9 Wen Hua Lu 3,132 497 

10 Ji Chang Lu 3,134 467 



11 Gao Xin Qu 585 5,283 

12 Long Dong 269 3,932 

13 He Bei Lu 191 2,375 

 376 

It is also noteworthy that, real-world earthquake events have demonstrated that modern 377 

telecommunication systems can also be seismically-vulnerable, and thus sustain earthquake-initiated 378 

functionality losses (Krishnamurthy et al. 2016), whereby the information sharing regarding the real-379 

time functionality status of the local hospital system can be substantially disrupted, throughout post-380 

shock emergency transfers. Therefore, for each of the two scenarios described above, the cases where 381 

the real-time information is, and is not available, respectively, will be further introduced. Hence, a total 382 

of four different scenarios have been generated for this case study, as shown in Table 3. Moreover, for 383 

each of those scenarios, different proportions of CAVs participating in the post-shock emergency 384 

transfer are accounted for by considering five cases, from 20% to 100% in increments of 20%. 385 

Finally, to generate nontrivial and realistic simulation outcome, one particular earthquake scenario 386 

with the magnitude of 7.25 and epicentral depth of 10 km are considered in this paper, which is consistent 387 

with the real-world, historical seismic activities recorded across Tangshan city (Lomnitz and Lomnitz 388 

1978, Chen et al. 2021). 389 

 390 

4. Simulation results 391 

4.1. Daytime Scenario 392 

Figure 4 tracks the median percentage of the injured population en route (IPER) to hospitals versus the 393 

gross population in the region, throughout the post-shock emergency transfer, under the daytime 394 

scenario. In particular, the results associated with the corresponding cases with and without the real-395 

time information sharing, regarding the functionality status of the local hospital system (which is 396 

measured by the amount of the remaining ward beds, as described in Section 2) have been plotted in 397 

Figs. 4(a) and 4(b), respectively.   398 



     399 

     (a) With information sharing                        (b) Without information sharing 400 
Fig. 4. Median percentage of injured population en route under daytime scenario. 401 

 402 

As shown in Fig. 4, the number of injured in need of hospitalization is found to reach 25,680, which 403 

account for 3.656% of the total population, under such a catastrophic earthquake scenario. From Fig. 404 

4(a), notably, the post-shock emergency transfer is demonstrated to be going more smoothly and 405 

promptly, when more CAVs are engaged in the campaign. Quantitively, in terms of the two extreme 406 

cases (with 0 and 100% CAVs, respectively), the corresponding GTT (obtained following Eq. (8)) of the 407 

whole transfer campaign are found to be approximately 15 and 9.1 hours, respectively, signaling a 39% 408 

reduction, owing to the presence of CAVs. In particular, it can be further found from the trajectory 409 

associated with the case with 100% CAVs that, the IPER value is decreasing with an almost-constant 410 

slope until the 250th minutes after the shock, when 90% of the injured have been delivered to hospitals. 411 

By comparison, in the case without any CAV, its trajectory reveals that the transfer is becoming slower 412 

after 50% of the injured are delivered to the local hospital system, and it takes 520 minutes, that is 2.08 413 

times longer (than that associated with the case with 100% CAVs), for the 90% to be transferred. 414 

Justifiably, such a significant reduction of GTT is strategically crucial to the minimization of the fatality 415 

rate, as well as socio-economic losses of earthquake-impacted urban communities. 416 

Table 5. Median GTT with regard to different percentage of CAV agents under daytime scenario 417 

Scenarios considered GTT (minutes) 

 0% 20% 40% 60% 80% 100% 

scenario 1 (with) 900 805 641 561 567 547 

scenario 2 (without) 2,261 2,247 2,217 2,224 2,208 2,191 

 418 

Nonetheless, it shall be also highlighted that the resulting GTT is not decreasing linearly with the 419 

growing percentage of CAVs participating in the transfer campaigns. From Fig. 4(a), shows a step 420 
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change in the delivery when the proportion of CAVs reach 40%. As shown in Table 5, the resulting GTT 421 

in such a case is 10.7 hours, 28.7% shorter than that regarding the baseline. On the other hand, the time 422 

reduction for higher proportions of CAVs is not really significant. Such an observation suggests that, 423 

given their autonomous decision-making capabilities under public emergencies, the deployment of a 424 

fleet of CAVs, even just on a moderate scale, can be leveraged as an effective tool to ameliorate public 425 

health resilience of future urban communities imperiled by natural hazards.  426 

Moreover, the contribution of CAVs to public health resilience appear significantly diminished, when 427 

the real-time information regarding hospital system functionality is inaccessible, as shown in Fig. 4(b). 428 

Although the slope is initially steeper than the case with information, the baseline GTT is more than 429 

doubled. Overall, the trajectories associated with all the different cases are overlapping, throughout the 430 

entirety of the post-shock transfer. Quantitatively, even for the case of 100% CAVs, the resulting GTT 431 

reaches 36.5 hours, merely 3.1% lower than that of the baseline, signaling an almost-negligible 432 

contribution of CAVs on the post-shock transfer. Such a stark contrast between scenarios 1 and 2 reveals 433 

that the contribution of CAVs can be maximized, only when real-time information about the hospital 434 

capacity is continually available. Hence, it further suggests that the interdependence among different 435 

critical infrastructure systems should be accounted for, in terms of the risk governance and public health 436 

resilience amelioration of future urban communities.  437 

In parallel, as shown in Table 5, it can be found that, regarding the cases with 0% and 100% CAVs, 438 

for scenario 2, the obtained GTT is 2.5 and 4 time longer than the corresponding values associated with 439 

scenario 1, respectively. It therefore reveals that, due to the lack of real-time information, substantially 440 

more injured inhabitants will be delivered to hospitals with initially higher functionality grade, which 441 

can be thus overwhelmed, given such a significant healthcare demand, in the wake of damaging 442 

earthquakes. As a result, considerable fraction of those wounded will then need to re-select, leading to 443 

a much longer transfer campaign. This is identified in Fig. 4(b) by the portion of the GTT curve with 444 

horizontal tangent. 445 

 446 
4.2. Nighttime Scenario 447 

For the nighttime scenarios, a larger proportion of the injured are distributed across neighborhoods with 448 

the ID Nos. 2, 3, 4, 11, 12, and 13, whereas most of the hospitals are located across the downtown area 449 

(Fig. 3). The corresponding post-shock transfer is thus expected to be more time-consuming, given the 450 

longer distance to the local hospital system, and likely to be hindered by the limited choice of alternative 451 

routes to the hospital and therefore the possibility of hold ups for many of the injured. 452 

As shown in Table 6, unlike the earthquake at daytime, for both scenarios 3 and 4, the resulting GTTs 453 

are not found to be decreasing monotonically, given the increasing percentage of CAVs. Specifically, 454 

the GTT reaches the minimum, when the percentage of CAVs is set to be 80% for both scenarios, leading 455 



to a reduction by 24.2% (11.6 hours versus 15.3 hours) and 11.7% (30.4 hours versus 34.4 hours), 456 

respectively, highlighting again that the lack of information sharing will reduce the effect of CAVs. 457 

  458 
(a) With information sharing                        (b) Without information sharing 459 
Fig. 5. Median percentage of injured population en route under nighttime scenario. 460 

In particular, Fig. 5(a) reveals that, without the participation of any CAV, the IPER reduces more 461 

quickly in the earlier stage, compared to other cases. Such a significant difference from the results shown 462 

in Fig. 4(a) shows that, as the simulation starts with the road network without any traffic flow, the 463 

transfer is initially more efficient when the injured choose the shortest path, rather than the input 464 

provided by dynamic route programming. However, the transfer becomes increasingly slow in the latter 465 

stage, when a relatively small proportion of agents are engaging in the re-direction and new destination 466 

as the treatment in the targeted hospital is inaccessible on arrival, and they are required to travel among 467 

different hospitals, across the crowded downtown area. Nevertheless, owing to their adaptivity, all the 468 

other cases with CVAs catch up and outpace the baseline, even though both the reduction in time and 469 

the percentage of injured involved are rather marginal.  470 

The impact of the hospital re-selection is more clearly pronounced, for the post-shock transfer under 471 

scenario 4, as shown in Fig. 5(b). It can be found that, until 80% of the injured have reached the local 472 

hospital system, the trajectories associated with all the different cases are nearly identical, suggesting a 473 

fairly marginal contribution of the increasing amount of CAVs, which is similar to the pattern found 474 

from Fig. 4(b). 475 

  Table 6. Median GTT with regard to different percentage of CAV agents under nighttime scenario 476 

Scenarios considered GTT (minutes) 

 0% 20% 40% 60% 80% 100% 

scenario 3 (with) 919 828 765 759 697 756 

scenario 4 (without) 2,066 1,948 1,949 1,966 1,824 1,836 

However, regarding the baseline case, a long plateau is observed thereafter, indicating that a 477 
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significant fraction of the injured population, who are travelling along the shortest path to the re-selected 478 

hospital, without exploring the connectivity of the other road segments of the road network, are stuck in 479 

traffic jam. By comparison, as more CAVs are deployed, the length of the plateau shortens, although the 480 

slope remains similar among the different cases.     481 

 482 
4.3. Discussions 483 

In Sections 4.1 and 4.2, the obtained simulation outcome regarding the 4 different scenarios have 484 

highlighted the complexity of the post-shock transfer of large number of injured inhabitants across 485 

modern urban communities, as a combined result of different earthquake scenarios, the functionality 486 

supply capacity of the local hospital system, the topological configuration of the corresponding road 487 

network, as well as the crowd dynamics collectively driven by the behavioral pattern of each individual 488 

agents engaging in the transfer campaign. Against this backdrop, this Section attempts to dig further into 489 

the result, and generate new insights that can be generalizable to other urban communities with different 490 

scales and infrastructures systems with different functionality capacities and topologies. 491 

Quantitatively, among all the cases considered in Sections 4.1 and 4.2, the one with 100% CAVs 492 

under scenario 1 has been found to lead to the minimum GTT of the whole transfer campaign, although 493 

similar results can be obtained by engaging only 60% of CAVs. As described above, according to the 494 

setup of such a case, most of the injured inhabitants will be in the downtown area, where a concentrated 495 

functionality demand on the hospital system has been thus generated. Meanwhile, it can be found from 496 

Fig. 3 that, all those hospitals with the functionality grade Ⅰ are also embedded in such an area (which is 497 

indeed fairly common, with regard to the configuration of the majority of modern urban communities), 498 

leading to a better match between the local functionality supply and demand, whereby the re-selection 499 

and re-transfer can be largely avoided. In addition, it shall be highlighted that the redundancy of the 500 

local road network topology is indeed playing an equally decisive role to the effective transfer, in the 501 

sense that all the hospitals in such an area are well-connected, and thereby much more accessible from 502 

different neighborhoods nearby, especially, when considerable number of CVAs, which benefit from the 503 

real-time connectivity of the whole road network, are participating in the transfer. For example, as shown 504 

in Fig. 3, the hospital at node 145 is not only close to all those neighborhoods with ID Nos. 1, 5, 6, 7, 8, 505 

9, and 10, but is also reachable by up to a total of four different road segments. By comparison, the 506 

hospital system is considerably sparser in the peripheral neighborhoods. In addition, the topology of the 507 

road network in those areas is also significantly less redundant, which indicates that hospitals can be 508 

also less accessible in such areas (Byun and D’Ayala 2022). As a result, traffic congestion is thus more 509 

likely to be triggered in the course of the emergency transfer, especially, when all the agents choose to 510 

travel by adhering to the shortest path to those hospitals they have picked, which will then delay the 511 

whole campaign. However, regarding scenario 1, where earthquakes occur at daytime, limited number 512 



of injured inhabitants will be located at periphery areas of the community, leading to a lower demand 513 

on the network, which helps to maintain a local equilibrium. In particular, when more CAVs have been 514 

engaging in the campaign, the stagnancy associated with the post-shock transfer has been effectively 515 

alleviated, throughout both the downtown and periphery areas. As shown in Fig. 4 (a), no delay is 516 

observed until the moment when the majority of the injured inhabitants have been admitted to the 517 

hospital system already.  518 

However, as shown in Section 4.2, the advantage of CAVs can be substantially reduced, in the case 519 

with the majority of the injured in the periphery, which is the setup of scenario 3. The mismatch between 520 

the supply and demand in such a scenario, with regard to the hospital system, will lead to longer-distance 521 

travel for many injured inhabitants, who need to reach those hospitals in the downtown. In particular, 522 

due to the sparsity of road segments in the periphery and the limited river crossing, the dynamic route 523 

programming of CAVs would sometimes bring about the detour (to circumvent those congested 524 

segments), which will, paradoxically, prolong the transfer. As shown in Fig. 5 (a), despite the shorter 525 

GTTs regarding the whole campaign, those cases with the presences of CAVs are even trailing the 526 

baseline, in the early stage of the transfer.  527 

Compared to scenarios 1 and 3, transfer in scenarios 2 and 4 are significantly more sluggish, leading 528 

to GTTs that are up to 4 times longer. As mentioned above, the uninformed choice of hospitals will cause 529 

re-selection and re-transfer for a large number of agents, as a result of the absence of the real-time 530 

information sharing in such two scenarios. When it comes to the real-world hazard events, the significant 531 

re-transfer endeavor would contribute to the lack of coordination of the traffic flow across local road 532 

networks, alongside other vehicles (e.g. driven by those who are not wounded by the hazard, but are 533 

moving to other intact communities), which are not even modelled in this framework. It shall be 534 

particularly highlighted that, such an uncoordinated traffic flow will have a cascading effect on the post-535 

shock transfer, in the sense that the long-lasting and pervasive congestion on several road segments 536 

(especially those critical ones, for example, connecting those hospitals with functionality grade Ⅰ) will 537 

limit the contribution of CVAs, despite their route planning capabilities (as shown in both Figs. 4 and 538 

5), and ultimately, increase the mortality and socio-economic losses under hazard events. Furthermore, 539 

the other emergency responses endeavors (e.g. fire extinguishment, debris removal, and etc.) will also 540 

be substantially hindered, and the resilience of the whole community will be thus reduced. 541 

In summary, the agent-based model developed in this research has highlighted that uncoordinated 542 

transfer on the system-level can be triggered by the lack of adaptivity on the individual level. On the 543 

contrary, more rational decision regarding the hospital selection, owing to the access to the real-time 544 

information of the local hospital system, can significantly streamline the citywide transfer throughout 545 

public emergencies. Furthermore, behavior of those transfers can be further ameliorated through the 546 

deployment of the fleet of CAVs, who are essentially able to maximize the usage of the real-time 547 



connectivity of the local road network, through dynamic route planning. Therefore, in view of its 548 

granularity, the proposed framework can serve as a viable tool for stakeholders and administrators of 549 

future urban communities to develop appropriate emergency response strategies, while formulating risk 550 

governance policies. Besides, given its inclusiveness, more complex behavior patterns of individuals 551 

and other sociological factors can be also incorporated into such an ABM framework. 552 

Notwithstanding the new insights generated and discussed above, it should be noted that, given the 553 

burgeoning study into the self-driving vehicles (Badue et al. 2021), more research needs to be 554 

conducted to model the nuanced responsive behavior of future CAVs under complex on-road 555 

conditions, throughout public emergencies, whereby the developed framework in this paper can be 556 

further tailored to future urban communities with intelligent road networks (Fu et al. 2021).  557 

5. Conclusions  558 

Throughout the past decades, urbanization has become an inexorable trend around the globe. 559 

Accordingly, modern urban communities have served as the engine for wealth creation and technological 560 

advance, in most of the nations (Bettencourt et al. 2017). Nevertheless, the advantage of booming urban 561 

communities has often been found to be offset by the recurrent curses of various catastrophes (Glaeser 562 

2011), especially, natural hazards. Against this backdrop, the public health resilience of those hazard-563 

impacted urban communities can be thus jeopardized, and it is thus strategically crucial to develop a 564 

principled understanding on the post-hazard massive transfer across those communities, incorporating 565 

aspects ranging from hazard scenarios, to the behavioral pattern of injured inhabitants, as well as the 566 

topological configuration and operational dynamic of an array of critical infrastructure systems serving 567 

them, throughout public emergencies.   568 

Meanwhile, in light of the increasing penetration of artificial intelligence that is revolutionizing the 569 

modus operandi of modern urban communities, deployment and participation of CAVs are also expected 570 

to reshape those massive transfer campaigns. Compared to conventional vehicles, i.e. HDVs, CAVs are 571 

capable of planning the travel route autonomously, by exploring the real-time functionality status of 572 

local road network in the course of the transfer, which can be strategically crucial to the coordination 573 

among individual vehicles engaging in those campaigns. Moreover, CAVs could also be particularly 574 

conducive to the transfer of those hazard-injured inhabitants, as well as other vulnerable groups, who 575 

are struggling to drive on their own. Nevertheless, research on the impact of the participation of CAVs 576 

on large-scale, post-shock transfer has been merger, so far.    577 

To fill in such a knowledge gap, as a bottom-up approach to complex and large-scale socio-economic 578 

systems with interacting entities (Batty 2007, Sun et al. 2019), an ABM framework, where each injured 579 

inhabitant is modeled as an independent agent, who can be transferred to local hospitals by either HDVs 580 

or CVAs, has been developed in this study. To demonstrate its applicability, this framework is applied 581 

to model the post-earthquake emergency transfer across the networked hospital system-road network-582 



community in Tangshan city, which is located in one of the most earthquake-prone regions of China. 583 

Particularly, in such a case-study, the impact of the initial spatiotemporal distribution of earthquake-584 

initiated wounded inhabitants, the percentage of inhabitants (engaging in the transfer campaign) 585 

transferred by CAVs, and the real-time information of the functionality status of the local hospital system 586 

on the citywide transfer, has been investigated. A host of conclusions have been drawn from the outcome 587 

of that study, as the following: 588 

1. Owing to its granularity, the ABM framework proposed in this paper can deliver a nuanced 589 

modelling on the city-scale transfer campaigns, with the participation of a fleet of CAVs;  590 

2. The spatial distribution of earthquake-initiated wounded inhabitants is found to have a profound 591 

impact on the behavior of the post-shock transfer. Regarding scenarios with earthquake at 592 

nighttime, the mismatch between the supply and demand on the hospital functionality will render 593 

the transfer campaign susceptible to disruptions; 594 

3. The lack of real-time information regarding the hospital system functionality will substantially 595 

complicate and prolong post-shock transfer campaigns, in view of the system-level incoordination, 596 

as a result of the irrational hospital selection of a significant fraction of injured inhabitants; 597 

4. The participation of large number of CAVs can significantly expedite the post-shock transfer. In 598 

terms of earthquakes at daytime, a reduction of nearly 30% has been observed, regarding the gross 599 

transfer time in the case of just 40% of CAVs. It can be thereby concluded that the deployment of 600 

a fleet of CAVs, even with only a moderate size, can be strategically critical to the minimization 601 

of mortality of earthquake-impacted urban communities. It is also noteworthy that, unlike HDVs, 602 

the negative impact of panic and potentially irrational behavior of human beings (throughout 603 

emergencies) upon post-shock transfers can be effectively curbed by CAVs. The cost-604 

effectiveness of the investment on that deployment of CAVs can be thereby further increased, for 605 

future urban communities.   606 

Meanwhile, it shall also be noted that the casualty of urban communities under hazardous events can be 607 

profoundly impacted by an array of additional influential factors, e.g. the age, the underlying health 608 

condition, and the household income of those injured inhabitants, which have not been modelled in this 609 

study. Besides, as already highlighted by the case-study, apart from the local hospital system alone, the 610 

post-shock transfer and rescue will also be reshaped by the real-time functionality of the road network, 611 

the telecommunication system, as well as a host of other infrastructure systems embedded in the same 612 

region, given the looped interdependence within modern urban communities (Kröger and Zio 2011, 613 

Helbing 2013, Zhao and Sun 2021). By incorporating those factors into account, further research needs 614 

to be conducted to develop a more adaptive, coordinated and targeted strategy of post-shock rapid 615 

response, including emergency transfers, whereby the human, economic, and societal losses can be 616 

minimized, following the inclusive ABM framework proposed in this paper. 617 
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